6.5 Harder Trigonometric Equations - 更复杂的三角方程

知识点总结与练习题

核心知识点

1. 复合角三角方程 (Compound Angle Trigonometric Equations)

核心概念 (Core Concept):形如 \(\sin n\theta = k\)、\(\cos n\theta = k\) 和 \(\tan n\theta = p\) 的方程。

  • 需要通过变量替换来简化
  • 设 \(X = n\theta\),将原方程转化为基本三角方程
  • 求解后需要将 \(X\) 的值转换回 \(\theta\) 的值

公式 (Formula):变量替换公式 \(X = n\theta\)

2. 相位移动方程 (Phase Shift Equations)

定义 (Definition):形如 \(\sin(\theta + \alpha) = k\)、\(\cos(\theta + \alpha) = k\) 和 \(\tan(\theta + \alpha) = p\) 的方程。

  • \(\alpha\) 是相位移动量
  • 设 \(X = \theta + \alpha\),调整解区间
  • 求解后需要减去 \(\alpha\) 得到原变量的解

应用场景 (Application):物理学中的波动方程、工程学中的信号处理

关键词汇表

复合角方程 Compound Angle Equations
相位移动 Phase Shift
变量替换 Variable Substitution
区间调整 Interval Adjustment
多重解 Multiple Solutions
主值 Principal Value

例题解析

Example 1: 复合角方程求解

题目:求解 \(\cos 3\theta = 0.766\),在区间 \(0 \leq \theta \leq 2\pi\) 内。

a) 设 \(X = 3\theta\)

b) 调整区间:\(0 \leq X \leq 6\pi\)

解答

解题步骤说明:

  • 步骤1:设 \(X = 3\theta\)
  • 步骤2:调整解区间 \(0 \leq X \leq 6\pi\)
  • 步骤3:求解 \(\cos X = 0.766\)
  • 步骤4:找到所有解 \(X = 0.698, 5.585, 6.981, 11.88, 13.264, 18.151\)
  • 步骤5:转换回 \(\theta = \frac{X}{3}\)
  • 结论:\(\theta = 0.233, 1.862, 2.327, 3.960, 4.421, 6.050\)

Example 2: 相位移动方程求解

题目:求解 \(\sin(x + 60°) = 0.3\),在区间 \(0 \leq x \leq 360°\) 内。

解答

解题步骤说明:

  • 步骤1:设 \(X = x + 60°\)
  • 步骤2:调整区间 \(60° \leq X \leq 420°\)
  • 步骤3:求解 \(\sin X = 0.3\)
  • 步骤4:找到解 \(X = 162.54°, 377.45°\)
  • 步骤5:转换回 \(x = X - 60°\)
  • 最终答案:\(x = 102.5°, 317.5°\)

Question 1

求解下列方程,在给定区间内:

a) \(\sin 4\theta = 0\),\(0 \leq \theta \leq 360°\)

b) \(\cos 3\theta = -1\),\(0 \leq \theta \leq 360°\)

c) \(\tan 2\theta = 1\),\(0 \leq \theta \leq 360°\)

答题区域:

Question 2

求解下列方程,在给定区间内:

a) \(\cos 2\theta = \frac{1}{2}\),\(0 \leq \theta \leq 2\pi\)

b) \(\tan \frac{\theta}{2} = -\frac{1}{\sqrt{3}}\),\(0 \leq \theta \leq 2\pi\)

c) \(\sin(-\theta) = \frac{1}{\sqrt{2}}\),\(0 \leq \theta \leq 2\pi\)

答题区域:

Question 3

求解下列方程,在给定区间内:

a) \(\tan(45° - \theta) = -1\),\(0 \leq \theta \leq 360°\)

b) \(2\sin(\theta - \frac{\pi}{9}) = 1\),\(0 \leq \theta \leq 2\pi\)

c) \(\tan(\theta + 75°) = \sqrt{3}\),\(0 \leq \theta \leq 360°\)

答题区域:

Question 4

求解下列方程,在给定区间内:

a) \(3\sin 3\theta = 2\cos 3\theta\),\(0 \leq \theta \leq 180°\)

b) \(4\sin(\theta + \frac{\pi}{4}) = 5\cos(\theta + \frac{\pi}{4})\),\(0 \leq \theta \leq \frac{5\pi}{2}\)

c) \(2\sin 2x - 7\cos 2x = 0\),\(0 \leq x \leq 180°\)

答题区域:

答案与解析

Question 1 解析

a) 设 \(X = 4\theta\),区间调整为 \(0 \leq X \leq 1440°\)

求解 \(\sin X = 0\),得 \(X = 0°, 180°, 360°, 540°, 720°, 900°, 1080°, 1260°, 1440°\)

转换回 \(\theta = \frac{X}{4}\):\(\theta = 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°\)

b) 设 \(X = 3\theta\),区间调整为 \(0 \leq X \leq 1080°\)

求解 \(\cos X = -1\),得 \(X = 180°, 540°, 900°\)

转换回 \(\theta = \frac{X}{3}\):\(\theta = 60°, 180°, 300°\)

c) 设 \(X = 2\theta\),区间调整为 \(0 \leq X \leq 720°\)

求解 \(\tan X = 1\),得 \(X = 45°, 225°, 405°, 585°\)

转换回 \(\theta = \frac{X}{2}\):\(\theta = 22.5°, 112.5°, 202.5°, 292.5°\)

答案:a) \(\theta = 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°\);b) \(\theta = 60°, 180°, 300°\);c) \(\theta = 22.5°, 112.5°, 202.5°, 292.5°\)
Question 2 解析

a) 设 \(X = 2\theta\),区间调整为 \(0 \leq X \leq 4\pi\)

求解 \(\cos X = \frac{1}{2}\),得 \(X = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}\)

转换回 \(\theta = \frac{X}{2}\):\(\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\)

b) 设 \(X = \frac{\theta}{2}\),区间调整为 \(0 \leq X \leq \pi\)

求解 \(\tan X = -\frac{1}{\sqrt{3}}\),得 \(X = \frac{5\pi}{6}\)

转换回 \(\theta = 2X\):\(\theta = \frac{5\pi}{3}\)

c) 利用 \(\sin(-\theta) = -\sin\theta\),得 \(\sin\theta = -\frac{1}{\sqrt{2}}\)

求解得 \(\theta = \frac{5\pi}{4}, \frac{7\pi}{4}\)

答案:a) \(\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}\);b) \(\theta = \frac{5\pi}{3}\);c) \(\theta = \frac{5\pi}{4}, \frac{7\pi}{4}\)
Question 3 解析

a) 设 \(X = 45° - \theta\),区间调整为 \(-315° \leq X \leq 45°\)

求解 \(\tan X = -1\),得 \(X = -45°, 135°\)

转换回 \(\theta = 45° - X\):\(\theta = 90°, -90°\)

在给定区间内:\(\theta = 90°, 270°\)

b) 设 \(X = \theta - \frac{\pi}{9}\),区间调整为 \(-\frac{\pi}{9} \leq X \leq \frac{17\pi}{9}\)

求解 \(\sin X = \frac{1}{2}\),得 \(X = \frac{\pi}{6}, \frac{5\pi}{6}\)

转换回 \(\theta = X + \frac{\pi}{9}\):\(\theta = \frac{7\pi}{18}, \frac{19\pi}{18}\)

c) 设 \(X = \theta + 75°\),区间调整为 \(75° \leq X \leq 435°\)

求解 \(\tan X = \sqrt{3}\),得 \(X = 60°, 240°\)

转换回 \(\theta = X - 75°\):\(\theta = -15°, 165°\)

在给定区间内:\(\theta = 15°, 195°\)

答案:a) \(\theta = 90°, 270°\);b) \(\theta = \frac{7\pi}{18}, \frac{19\pi}{18}\);c) \(\theta = 15°, 195°\)
Question 4 解析

a) 将方程转化为 \(\tan 3\theta = \frac{2}{3}\)

设 \(X = 3\theta\),区间调整为 \(0 \leq X \leq 540°\)

求解 \(\tan X = \frac{2}{3}\),得 \(X = 33.69°, 213.69°, 393.69°\)

转换回 \(\theta = \frac{X}{3}\):\(\theta = 11.2°, 71.2°, 131.2°\)

b) 将方程转化为 \(\tan(\theta + \frac{\pi}{4}) = \frac{5}{4}\)

设 \(X = \theta + \frac{\pi}{4}\),区间调整为 \(\frac{\pi}{4} \leq X \leq \frac{11\pi}{4}\)

求解 \(\tan X = \frac{5}{4}\),得 \(X = 0.896, 4.037\)

转换回 \(\theta = X - \frac{\pi}{4}\):\(\theta = 0.197, 3.34\)

c) 将方程转化为 \(\tan 2x = \frac{7}{2}\)

设 \(X = 2x\),区间调整为 \(0 \leq X \leq 360°\)

求解 \(\tan X = \frac{7}{2}\),得 \(X = 74.05°, 254.05°\)

转换回 \(x = \frac{X}{2}\):\(x = 37.0°, 127.0°\)

答案:a) \(\theta = 11.2°, 71.2°, 131.2°\);b) \(\theta = 0.197, 3.34\);c) \(x = 37.0°, 127.0°\)